Selasa, 22 Juni 2010

TERMODINAMIKA

Hukum termodinamikaHukum-hukum termodinamika pada prinsipnya menjelaskan peristiwa perpindahan panas dan kerja pada proses termodinamika. Sejak perumusannya, hukum-hukum ini telah menjadi salah satu hukum terpenting dalam fisika dan berbagai cabang ilmu lainnya yang berhubungan dengan termodinamika. Hukum-hukum ini sering dikaitkan dengan konsep-konsep yang jauh melampau hal-hal yang dinyatakan dalam kata-kata rumusannya.tidak dapat diciptakan dan dimusnahkan tetapi dapat dikonversi dari suatu bentuk ke bentuk yang lain.” Hukum pertama adalah prinsip kekekalan energi yang memasukan kalor sebagai model perpindahan energi. Menurut hukum pertama, energi dalam suatu benda dapat ditingkatkan dengan menambahkan kalor ke benda atau dengan melakukan usaha pada benda. Hukum pertama tidak membatasi tentang arah perpindahan kalor yang dapat terjadi.Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (di luar) sistem disebut lingkungan.Usaha LuarUsaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya.W = p∆V= p(V2 – V1)Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagaiTekanan dan volume dapat diplot dalam grafik p – V. jika perubahan tekanan dan volume gas dinyatakan dalam bentuk grafik p – V, usaha yang dilakukan gas merupakan luas daerah di bawah grafik p – V.Gas dikatakan melakukan usaha apabila volume gas bertambah besar (atau mengembang) dan V2 > V1. sebaliknya, gas dikatakan menerima usaha (atau usaha dilakukan terhadap gas) apabila volume gas mengecil atau V2 < r =" 8,31" sebagaiq =" W" u =" 0)" q =" W).Proses" v =" 0)," w =" 0)" qv =" ∆UProses" w =" p∆V)." konstanqv ="∆UDari" sebagaiw =" Qp" q =" 0)." w =" ∆U).Jika"> 1).Proses adiabatik dapat digambarkan dalam grafik p – V dengan bentuk kurva yang mirip dengan grafik p – V pada proses isotermik namun dengan kelengkungan yang lebih curam.

SIKLUS CARNOT, SIKLUS OTTO, DAN SIKLUS DIESEL

1) Mesin Carnot (Siklus Carnot)Sejak mesin uap ditemukan oleh James watt, orang selalu berusaha untuk memperoleh mesin yang memunyai efisiensi yang lebih tinggi. Pada tahun 1824, seorang insinyur Perancis bernama Sardi Carnot (1796-1832) mempublikasikan teori tentang mesin kalor ideal.Gambar diagram asli mesin CarnotSetiap sistem termodinamika berada dalam keadaan tertentu. Sebuah siklus termodinamika terjadi ketika suatu sistem mengalami rangkaian-rangkaian yang berbeda dan akhirnya kembali ke keadaan semula. Dalam proses melalui sistem ini, sistem tersebut dapat melakukan usaha terhadap lingkungannya, sehingga disebut mesin kalor.Sebuah mesin kalor bekerja dengan cara memindahkan energi dari daerah yang lebih panas ke daerah yang lebih dingin, dan dalam prosesnya, mengubah sebagian energi menjadi usaha mekanis. Sistem yang bekerja sebaliknya, dimana gaya eksternal yang dikerjakan pada suatu mesin kalor dapat menyebabkan proses yang memindahkan energi panas dari daerah yang lebih dingin ke energi panas disebut mesin refrigerator.Mesin kalor ideal Carnot bekerja pada siklus reversible di antara dua tandon suhu (reservoir). Mesin kalor Carnot menyerap kalor dari reservoir (tandon) panas T1 sebesar Q1 dan melepaskan kalor pada reservoir dingin T2 sebesar Q2. Seluruh proses pada siklus Carnot bersifat reversible. Siklus Carnot terdiri atas empat proses, yaitu:1) Ekspansi isotermal reversible (A-B);2) Ekspansi adiabatik reversible (B-C);3) Kompresi isotermal reversible (C-D);4) Kompresi adiabatik reversible (D-A).Gambar Siklus CarnotMula-mula kalor diserap selama pemuaian isotermal (a-b). Selama pemuaian isotermal, suhu gas dalam silinder dijaga agar selalu konstan. Selanjutnya gas memuai secara adiabatik sehingga suhunya turun dari TH menjadi TL (b-c). TH = suhu tinggi (High temperatur), TL = suhu rendah (Low temperatur). Selama pemuaian adiabatik, tidak ada kalor yang masuk atau keluar dari silinder. Setelah itu gas ditekan secara isotermal (c-d). Selama penekanan isotermal, suhu gas dijaga agar selalu konstan.Selama pemuaian isotermal dan penekanan isotermal, suhu gas dijaga agar selalu konstan. Tujuannya adalah menghindari adanya perbedaan suhu. Adanya perbedaan suhu bisa menyebabkan terjadi perpindahan kalor (proses ireversibel). Agar proses isotermal bisa terjadi (suhu gas selalu konstan) maka gas harus dimuaikan atau ditekan secara perlahan-lahan. Dalam kenyataannya, pemuaian atau penekanan gas terjadi lebih cepat. Hal ini diakibatkan oleh adanya turbulensi, gesekan, viskositas (kekentalan dll). Akibatnya, proses isotermal yang sempurna tidak akan pernah ada. Sebaliknya, pemuaian dan penekanan adiabatik dilakukan dengan cepat. Tujuannya adalah menjaga agar kalor tidak mengalir menuju silinder atau kabur dari silinder. Adanya gesekan, viskositas ( kekentalan, dll) menyebabkan pemuaian dan penekanan adiabatik sempurna tidak akan pernah ada.Sebuah mesin nyata (real) yang beroperasi dalam suatu siklus pada temperatur TH and TC tidak mungkin melebihi efisiensi mesin Carnot. Sebuah mesin nyata (kiri) dibandingkan dengan siklus Carnot (kanan). Entropi dari sebuah material nyata berubah terhadap temperatur. Perubahan ini ditunjukkan dengan kurva pada diagram T-S. Pada gambar ini, kurva tersebut menunjukkan kesetimbangan uap-cair (lihat siklus Rankine). Irreversible sistem dan kehilangan kalor ke lingkungan (misalnya, disebabkan gesekan) menyebabkan siklus Carnot ideal tidak dapat terjadi pada semua langkah sebuah mesin nyata. Usaha yang dihasilkan mesin kalor Carnot adalahW = usaha yang dihasilkanQ1= kalor yang diserap/dimasukkan (J)Q2= kalor yang hilang/tidak terpakai (J)Teorema Carnot adalah pernyataan formal dari fakta bahwa: Tidak mungkin ada mesin yang beroperasi diantara dua reservoir panas yang lebih efisien daripada sebuah mesin Carnot yang beroperasi pada dua reservoir yang sama. Artinya, efisiensi maksimum yang dimungkinkan untuk sebuah mesin yang menggunakan temperatur tertentu diberikan oleh efisiensi mesin Carnot.atauEfisiensi mesin ( ) merupakan perbandingan usaha (W) yang dhasilkan dengan besar kalor masuk (Q1). Efisiensi mesin dapat dinyatakan dengan angka (dari 0 sampai 1) atau dalam % yaitu efisiensi dikalikan 100 %.Ditinjau dari besar usaha setiap proses:o Proses ekspansi isotermal reversible (A-B)(proses isotermal dU = 0)o Proses ekspansi adiabatik reversible (B-C)o Proses kompresi isotermal reversible (C-D)o Proses kompresi adiabatik reversible (D-A)Besar usaha total adalahUntuk mencari efisiensi termal,Untuk mengetahui apakah sama dengan , kita gunakan proses adiabatik (B-C) dan (D-A). kita gunakan persamaan sebagai berikut.Proses (B-C) Proses (D-A)Sehingga,Persamaan di atas menunjukkan bahwa,Dengan demikian, persamaan efisiensi termal mesin kalor Carnot adalahatau2) Mesin Bensin (Siklus Otto)Siklus Otto adalah siklus termodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel) adalah contoh penerapan dari sebuah siklus Otto. Mesin bensin dibagi menjadi dua, yaitu mesin dua tak dan mesin empat tak. Mesin dua tak adalah mesin yang memerlukan dua kali gerakan piston naik turun untuk sekali pembakaran (agar diperoleh tenaga). Mesin tersebut banyak digunakan pada motor-motor kecil. Mesin dua tak menghasilkan asap sebagai sisa pembakaran dari oli pelumas. Mesin empat tak memerlukan empat kali gerakan piston untuk sekali pembakaran. Pada motor-motor besar biasa menggunakan mesin empat tak. Akan tetapi, sekarang banyak motor-motor kecil bermesin empat tak. Mesin jenis ini sedikit menghasilkan sisa pembakaran karena bahan bakarnya hanya bensin murni.Gambar di atas merupakan mesin pembakaran dalam empat langkah (empat tak). Mula-mula campuran udara dan uap bensin mengalir dari karburator menuju silinder pada saat piston bergerak ke bawah (langkah masukan). Selanjutnya campuran udara dan uap bensin dalam silinder ditekan secara adiabatik ketika piston bergerak ke atas (langkah kompresi atau penekanan). Karena ditekan secara adiabatik maka suhu dan tekanan campuran meningkat. Pada saat yang sama, busi memercikkan bunga api sehingga campuran udara dan uap bensin terbakar. Ketika terbakar, suhu dan tekanan gas semakin bertambah. Gas bersuhu tinggi dan bertekanan tinggi tersebut memuai terhadap piston dan mendorong piston ke bawah (langkai pemuaian). Selanjutnya gas yang terbakar dibuang melalui katup pembuangan dan dialirkan menuju pipa pembuangan (langkah pembuangan). Katup masukan terbuka lagi dan keempat langkah tersebut diulangi kembali.Tujuan dari adanya langkah kompresi atau penekanan adiabatik adalah menaikkan suhu dan tekanan campuran udara dan uap bensin. Proses pembakaran pada tekanan yang tinggi akan menghasilkan suhu dan tekanan (P = F/A) yang sangat besar. Akibatnya gaya dorong (F = PA) yang dihasilkan selama proses pemuaian menjadi sangat besar. Mesin motor atau mobil menjadi lebih bertenaga. Walaupun tidak ditekan, campuran udara dan uap bensin bisa terbakar ketika busi memercikkan bunga api. Tapi suhu dan tekanan gas yang terbakar tidak terlalu tinggi sehingga gaya dorong yang dihasilkan juga kecil. Akibatnya mesin menjadi kurang bertenaga.Proses perubahan bentuk energi dan perpindahan energi pada mesin pembakaran dalam empat langkah di atas bisa dijelaskan seperti ini : Ketika terjadi proses pembakaran, energi potensial kimia dalam bensin + energi dalam udara berubah menjadi kalor alias panas. Sebagian kalor berubah menjadi energi mekanik batang piston dan poros engkol, sebagian kalor dibuang melalui pipa pembuangan (knalpot). Sebagian besar energi mekanik batang piston dan poros engkol berubah menjadi energi mekanik kendaraan (kendaraan bergerak), sebagian kecil berubah menjadi kalor alias panas sedangkan panas timbul akibat adanya gesekan.Secara termodinamika, siklus Otto memiliki 4 buah proses termodinamika yang terdiri dari 2 buah proses isokhorik (volume tetap) dan 2 buah proses adiabatis (kalor tetap).Gambar siklus OttoProses yang terjadi adalah :1-2 : Kompresi adiabatis2-3 : Pembakaran isokhorik3-4 : Ekspansi / langkah kerja adiabatis4-1 : Langkah buang isokhorikSesuai hukum 1 termodinamika, kesetaraan panas dan gerak dapat dituliskan sebagai persamaan energi sebagai berikut:Keterangan:Q = panas yang keluar atau masuk sistem (joule)ΔU = perubahan energi dalam (joule)W= kerja yang diberikan sistem (joule)Rancangan motor bakar diinginkan agar mampu mengubah sebanyak-banyaknya energi panas menjadi gerak. Untuk itu diperlukan pengetahuan teori mengenai efisiensi sistem tersebut. Dalam hal ini, efisiensi dari siklus Otto ialah:Dengan:Qin ialah panas yang dimasukkan ke dalam sistem.Pada siklus di atas D U = 0, karena pada akhir siklus posisi grafik kembali ke titik semula (atau keadaan fluida pada akhir siklus sama seperti pada awal siklus), sehingga:Dengan:Qout ialah panas yang dikeluarkan dari sistemDengan demikian, efisiensi siklus akan sebesar:Persamaan penambahan panas pada volume konstan pada siklus di atas ialah,Sedang pengeluaran panas pada volume tetap ialah,Dengan cv ialah panas spesifik udara pada volume tetap. (Notasi 1, 2, 3, dan 4 pada persamaan di atas adalah sesuai dengan titik-titik pada grafik dalam gambar 4 di atas.)Sehingga efisiensi siklus ialah,Proses 1-2 dan 3-4 adalah adiabatik, sehinggadanSedangkan dari grafik terlihat bahwa V1 = V4 dan V3 = V2, makaDengan demikian, makaSehingga efisiensi siklus pada persamaan (a) akan menjadiDalam hal in r = V1/V2 adalah perbandingan kompresi motor.3) Mesin Diesel (Siklus Rankine)Gambar mesin diesel pertamaSiklus Rankine adalah siklus termodinamika yang mengubah panas menjadi kerja. Panas disuplai secara eksternal pada aliran tertutup, yang biasanya menggunakan air sebagai fluida yang bergerak. Siklus ini menghasilkan 80% dari seluruh energi listrik yang dihasilkan di seluruh dunia. Siklus ini dinamai untuk mengenang ilmuan Skotlandia, William John Maqcuorn Rankine.Siklus Rankine adalah model operasi mesin uap panas yang secara umum ditemukan di pembangkit listrik. Sumber panas yang utama untuk siklus Rankine adalah batu bara, gas alam, minyak bumi, nuklir, dan panas matahari.Efisiensi siklus Rankine biasanya dibatasi oleh fluidanya. Tanpa tekanan yang mengarah pada keadaan super kritis, range temperatur akan cukup kecil. Uap memasuki turbin pada temperatur 565 °C (batas ketahanan stainless steel) dan kondenser bertemperatur sekitar 30°C. Hal ini memberikan efisiensi Carnot secara teoritis sebesar 63%, namun kenyataannya efisiensi pada pembangkit listrik sebesar 42%.Gambar Mesin Diesel (Siklus Rankine)Diagram ini menunjukkan siklus diesel ideal (sempurna). Mula-mula udara ditekan secara adiabatik (a-b), lalu dipanaskan pada tekanan konstan – penyuntik (injector) menyemprotkan solar dan terjadilah pembakaran (b-c), gas yang terbakar mengalami pemuaian adiabatik (c-d), pendinginan pada volume konstan – gas yang terbakar dibuang ke pipa pembuangan dan udara yang baru, masuk ke silinder (d-a).Asumsi yang digunakan pada siklus diesel ini sama dengan pada siklus Otto, kecuali langkah penambahan panas. Pada siklus diesel langkah 2-3 merupakan penambahan panas pada tekanan konstan.Sebagaimana pada siklus Otto, efisiensi siklus adalah:Persamaan penambahan panas pada tekanan konstan pada siklus di atas ialah:Qin = M cp (T3 – T2)Sedang pengeluaran panas pada volume tetap ialahQout = M cv (T4– T1)Sehingga efisiensi siklus ialahDalam hal ini cv/cp = k, sehinggaProses penambahan panas pada 2-3 adalah pada tekanan tetap, sehinggaatauProses 3-4 adalah adiabatik, sehinggaataudengan mengganti T3 dengan ruas kanan pada persamaan (c), makaKarena proses 1-2 adalah adiabatik, sedang V4=V1 (lihat grafik), makaDengan demikian persamaan (d) akan menjadiAtauDengan demikian efisiensi siklus pada persamaan (b) akan menjadiKarena telah diketahui bahwa:Maka,Dengan (V1/V2)k-1 = r adalah perbandingan kompresi motor, maka efisiensi bisa ditulis menjadiDari persamaan di atas terlihat bahwa efisiensi siklus diesel tergantung pada perbandingan kompresi dan perbandingan V3/V2 (untuk memudahkan, diberi notasi b). Efisiensi akan bertambah dengan memperbesar perbandingan kompresi, dan akan berkurang dengan bertambahnya b. Pada persamaan di atas, jika harga b mendekati 1 maka efisiensi siklus akan mendekati harga efisiensi siklus Otto. Dari persamaan tersebut terlihat juga bahwa pada perbandingan kompresi dan pemasukan panas yang sama, efisiensi siklus Otto lebih tinggi dibanding efisiensi siklus Diesel.Referensi:http://id.wikipedia.org/wiki/berkas:Real_vs_Carnot.pnghttp://www.gurumuda.comhttp://syairpuisiku.files.wordpress.comTugas 2Apresiasikan rumus dilihat dari Hukum I Termodinamika memformulasikan Ud dan UL pada siklus Otto, siklus Diesel, dan siklus Carnot!Jawab: Berdasarkan: Hukum Boyle (Robert Boyle, 1627 – 1691): Volume dari suatu gas adalah berbanding terbalik dengan tekanan yang diberikan jika suhunya dipertahankan tetap. Tekanan disini adalah tekanan mutlak.V ~ 1/P atau PV = konstan (jika T konstan) Hukum Charles (The Frenchman Jacques Charles, 1746-1823): Volume dari sejumlah gas berbanding lurus dengan suhu mutlak jika tekanan dipertahankan konstan.V ~ T (jika P konstan)Suhu mutlak : T (K) = T (0C) + 273.15 Hukum Guy-Lussac (Joseph Guy-Lussac 1778-1850): Pada volume tetap, tekanan gas berbanding lurus dengan suhu mutlak.P ~ T (jika V konstan)Suhu mutlak : T (K) = T (0C) + 273.15Persamaan: PV = nRT dikenal sebagai persamaan gas ideal, dimana R adalah Konstanta gas umum.R = 8,315 J / (mol. K)= 0.0821 (L. atm) / (mol. K)= 1.99 calories / (mol. K) Hipotesa Avogadro (Amedeo Avogadro, 1776-1856) mengatakan bahwa gas dengan volume yang sama pada tekanan dan temperatur yang sama mengandung jumlah molekul yang sama.NA = 6.02 X 1023NA dikenal sebagai bilangan Avogadro.PV = nRT = (N/NA) RTPV = NkTk = R/ NA = 8.315 J/(mol.K) / (6.02 X 1023 /mol)= 1.38 X 10-23 J/Kk dikenal sebagai Konstanta BoltzmannTekanan gas ideal :P = (1/3) mN / VdanPV = (1/3) mNPV = NkTMaka temperatur dapat dinyatakan sebagai:T = (1/3) m / katauT = (2/3k) {(1/2) (m )}{(1/2) (m )} merupakan energi kinetik (translasi) rata-rata gas.Telah ditunjukkan bahwa: T = (2/3k) {(1/2) (m )}{(1/2) (m )} merupakan energi kinetik (translasi) rata-rata gas.Dapat dituliskan bahwa:EK = (3/2) kTEnergi kinetik (EK) translasi rata-rata berbanding langsung dengan temperatur mutlak. Energi total secara keseluruhan dapat dituliskan menjadiN {(1/2) (m )} = (3/2) NkTSecara keseluruhan gas tidak bergerak, energi total merupakan energi dalam gas, U.U = (3/2) NkT = (3/2) nRTBesaran U tidak dapat diukur secara langsung dalam eksperimen, yang dapat diukur adalah turunannya, yakni kapasitas panas pada volume tetap, CV, walaupun sukar.Yang biasa diukur adalah , Cp adalah kapasitas panas/kalor pada tekanan tetap. Dalam termodinamika klasik, untuk gas idealCp – Cv = nRSehingga diperolehAtauCp = Cv + nR =(5/2) nRSehingga diperoleh:Dengan menggunakan distribusi Maxwell-Boltzmann diperoleh energi rata-rata molekul sebagai berikut:E = Et + Er + Ev= (3/2)kT + (2/2)kT + (2/2)kT = (7/2) kTEnergi rata-rata translasi (3/2)kT karena ada 3 derajat kebebasan (x,y,z), energi rata-rata rotasi (2/2)kT karena ada 2 derajat kebebasan, energi rata-rata vibrasi (2/2)kT karena ada 2 derajat kebebasan. Secara umum setiap derajat kebebasan menghasilkan energi rata-rata (1/2)kT. Prinsip ini dikenal sebagai prinsip ekipartisi energi (asas pembagian merata energi). Dari hasil di atas diperoleh:U = (7/2) NkT = (7/2) nRTAtauCv = (7/2) nRCp = Cv + nR = (9/2) nRSehingga diperoleh:g = (9/7) = 1,29

TEORI KINETIK GAS

Teori Kinetik (atau teori kinetik pada gas) berupaya menjelaskan sifat-sifat makroscopik gas, seperti tekanan, suhu, atau volume, dengan memperhatikan komposisi molekular mereka dan gerakannya. Intinya, teori ini menytakan bahwa tekanan tidaklah disebabkan oleh denyut-denyut statis di antara molekul-molekul, seperti yang diduga Isaac Newton, melainkan disebabkan oleh tumbukan antarmolekul yang bergerak pada kecepatan yang berbeda-beda. Teori Kinetik dikenal pula sebagai Teori Kinetik-Molekular atau Teori Tumbukan atau Teori Kinetik pada Gas.Teori untuk gas ideal memiliki ciri-ciri berikut ini:* Gas terdiri dari partikel-partikel sangat kecil, dengan [[massa] tidak nol.* Banyaknya molekul sangatlah banyak, sehingga perlakuan statistika dapat diterapkan.* Molekul-molekul ini bergerak secara konstan sekaligus acak. Partikel-partike yang bergerak sangat cepat itu secara konstan bertumbukan dengan dinding-dinding wadah.* Tumbukan-tumbukan partikel gas terhadap dinding wadah bersifat lenting (elastis) sempurna.* Interaksi antarmolekul dapat diabaikan (negligible). Mereka tidak mengeluarkan gaya satu sama lain, kecuali saat tumbukan terjadi.* Keseluruhan volume molekul-molekul gas individual dapat diabaikan bila dibandingkan dengan volume wadah. Ini setara dengan menyatakan bahwa jarak rata-rata antarpartikel gas cukuplah besar bila dibandingkan dengan ukuran mereka.* Molekul-molekul berbentuk bulat (bola) sempurna, dan bersifat lentur (elastic).* Energi kinetik rata-rata partikel-partikel gas hanya bergantung kepada suhu sistem.* Efek-efek relativistik dapat diabaikan.* Efek-efek Mekanika kuantum dapat diabaikan. Artinya bahwa jarak antarpartikel lebih besar daripada panjang gelombang panas de Broglie dan molekul-molekul dapat diperlakukan sebagai objek klasik.* Waktu selama terjadinya tumbukan molekul dengan dinding wadah dapat diabaikan karena berbanding lurus terhadap waktu selang antartumbukan.* Persamaan-persamaan gerak molekul berbanding terbalik terhadap waktu.Lebih banyak pengembangan menenangkan asumsi-asumsi ini dan didasarkan kepada Persamaan Boltzmann. Ini dapat secara akurat menjelaskan sifat-sifat gas padat, sebab mereka menyertakan volume molekul. Asumsi-asumsi penting adalah ketiadaan efek-efek quantum, kekacauan molekular dan gradien kecil di dalam sifat-sifat banyaknya. Perluasan terhadap orde yang lebih tinggi dalam kepadatan dikenal sebagai perluasan virial. Karya definitif adalah buku tulisan Chapman dan Enskog, tetepi terdapat pengembangan yang lebih modern dan terdapat pendekatan alternatif yang dikembangkan oleh Grad, didasarkan pada perluasan momentum.[rujukan?] Di dalam batasan lainnya, untuk gas yang diperjarang, gradien-gradien di dalam sifat-sifat besarnya tidaklah kecil bila dibandingkan dengan lintasan-lintasan bebas rata-ratanya. Ini dikenal sebagai rezim Knudsen regime dan perluasan-perluasannya dapat dinyatakan dengan Bilangan Knudsen.Teori Kinetik juga telah diperluas untuk memasukkan tumbukan tidak lenting di dalam materi butiran oleh Jenkins dan kawan-kawan.FaktorTekananTekanan dijelaskan oleh teori kinetik sebagai kemunculan dari gaya yang dihasilkan oleh molekul-molekul gas yang menabrak dinding wadah. Misalkan suatu gas denagn N molekul, masing-masing bermassa m, terisolasi di dalam wadah yang mirip kubus bervolume V. Ketika sebuah molekul gas menumbuk dinding wadah yang tegak lurus terhadap sumbu koordinat x dan memantul dengan arah berlawanan pada laju yang sama (suatu tumbukan lenting), maka momentum yang dilepaskan oleh partikel dan diraih oleh dinding adalah:\Delta p_x = p_i - p_f = 2 m v_x\,di mana vx adalah komponen-x dari kecepatan awal partikel.Partikel memberi tumbukan kepada dinding sekali setiap 2l/vx satuan waktu (di mana l adalah panjang wadah). Kendati partikel menumbuk sebuah dinding sekali setiap 1l/vx satuan waktu, hanya perubahan momentum pada dinding yang dianggap, sehingga partikel menghasilkan perubahan momentum pada dinding tertentu sekali setiap 2l/vx satuan waktu.\Delta t = \frac{2l}{v_x}gaya yang dimunculkan partikel ini adalah:F = \frac{\Delta p}{\Delta t} = \frac{2 m v_x}{\frac{2l}{v_x}} = \frac{m v_x^2}{l}Keseluruhan gaya yang menumbuk dinding adalah:F = \frac{m\sum_j v_{jx}^2}{l}di mana hasil jumlahnya adalah semua molekul gas di dalam wadah.Besaran kecepatan untuk tiap-tiap partikel mengikuti persamaan ini:v^2 = v_x^2 + v_y^2 + v_z^2Kini perhatikan gaya keseluruhan yang menumbuk keenam-enam dinding, dengan menambahkan sumbangan dari tiap-tiap arah, kita punya:\mbox{Total Force} = 2 \cdot \frac{m}{l}(\sum_j v_{jx}^2 + \sum_j v_{jy}^2 + \sum_j v_{jz}^2) = 2 \cdot \frac{m}{l} \sum_j (v_{jx}^2 + v_{jy}^2 + v_{jz}^2) = 2 \cdot \frac{m \sum_j v_{j}^2}{l}di mana faktor dua muncul sejak saat ini, dengan memperhatikan kedua-dua dinding menurut arah yang diberikan.Misalkan ada sejumlah besar partikel yang bergerak cukup acak, gaay pada tiap-tiap dinding akan hampir sama dan kini perhatikanlah gaya pada satu dinding saja, kita punya:F = \frac{1}{6} \left(2 \cdot \frac{m \sum_j v_{j}^2}{l}\right) = \frac{m \sum_j v_{j}^2}{3l}Kuantitas \sum_j v_{j}^2 dapat dituliskan sebagai {N} \overline{v^2}, di mana garis atas menunjukkan rata-rata, pada kasus ini rata-rata semua partikel. Kuantitas ini juga dinyatakan dengan v_{rms}^2 di mana vrms dalah akar kuadrat rata-rata kecepatan semua partikel.Jadi, gaya dapat dituliskan sebagai:F = \frac{Nmv_{rms}^2}{3l}Tekanan, yakni gaya per satuan luas, dari gas dapat dituliskan sebagai:P = \frac{F}{A} = \frac{Nmv_{rms}^2}{3Al}di mana A adalah luas dinding sasaran gaya.Jadi, karena luas bagian yang berseberangan dikali dengan panjang sama dengan volume, kita punya pernyataan berikut untuk tekananP = {Nmv_{rms}^2 \over 3V}di mana V adalah volume. Maka kita punyaPV = {Nmv_{rms}^2 \over 3}Karena Nm adalah masa keseluruhan gas, maka kepadatan adalah massa dibagi oleh volume \rho = {Nm \over V} .Maka tekanan adalahP = {2 \over 3} \frac{\rho\ v_{rms}^2}{2}Hasil ini menarik dan penting, sebab ia menghubungkan tekanan, sifat makroskopik, terhadap energi kinetik{1 \over 2} mv_{rms}^2 yakni suatu sifat mikroskopik. Ketahuilah bahwa hasil kali tekanan dan volume adalah sepertiga dari keseluruhan energi kinetik.translasional rata-rata per molekulSuhu dan energi kinetikDari hukum gas idealPV = NkBT(1)dimana B adalah konstanta Boltzmann dan T adalah suhu absolut. Dan dari rumus diatas, dihasilkan Gagal memparse (kesalahan sintaks): PV={Nmv_{rms}^2\overset 3}Derivat:Nk_BT=\frac{Nmv_{rms}^2}{3}T=\frac{mv_{rms}^2}{3k_B}(2)yang menuju ke fungsi energi kinetik dari sebuah molekulmv_{rms}^2=3k_BTEnergi kinetik dari sistem adalah N kali lipat dari molekul K=\frac{Nmv_{rms}^2}{2}Suhunya menjadiT=\frac{2K}{3Nk_B}(3)Persamaan 3 ini adalah salah satu hasil penting dari teori kinetik“ Rerata energi kinetik molekuler adalah sebanding dengan suhu absolut. ”Dari persamaan 1 dan 3 didapat:PV=\frac{2K}{3}(4)Dengan demikian, hasil dari tekanan dan volume tiap mol sebanding dengan rerata energi kinetik molekuler. Persamaan 1 dan 4 disebut dengan hasil klasik, yang juga dapat diturunkan dari mekanika statistik[1].Karena 3N adalah derajat kebebasan (DK) dalam sebuah sistem gas monoatomik dengan N partikel, energi kinetik tiap DK adalah:\frac{K}{3 N}=\frac{k_B T}{2}(5)Dalam energi kinetik tiap DK, konstanta kesetaraan suhu adalah setengah dari konstanta Boltzmann. Hasil ini berhubungan dengan teorema ekuipartisi. Seperti yang dijelaskan pada artikel kapasitas bahang, gas diatomik seharusnya mempunyai 7 derajat kebebasan, tetapi gas yang lebih ringan berlaku sebagai gas yang hanya mempunyai 5. Dengan demikian, energi kinetik tiap kelvin (gas ideal monoatomik) adalah:* Tiap mole: 12.47 J* Tiap molekul: 20.7 yJ = 129 μeVPada STP (273,15 K , 1 atm), didapat:* Tiap mole: 3406 J* Tiap molekul: 5.65 zJ = 35.2 meV

MESIN PENDINGIN DAN MESIN PEMANAS

Mesin kalor dan mesin pendingin menggunakan siklus energi kalor secara spontan dan tidak spontan. Jika mesin kalor kalor menyerap energi \bf{Q_1} dari benda bersuhu tinggi ~ sebab \bf secara \ spontan \ kalor \ melepaskan \ panas \ atau \ energinya \ pada \ suhu \ tinggi dan benda yang bersuhu rendah akan secara spontan menyerap energi tersebut. Benda bersuhu rendah dinyatakan mempunyai energi sebesar \bf{Q_2}.Berdasar prinsip mesin pemanas tersebut, maka perhitungan efisiensi mesin panas menjadi :\eta = \frac{Q_1-Q_2}{Q_1} x 100%Mengapa dihitung efisiensi ? Berdasarkan pernyataan Clausius, bahwa tidak ada mesin yang menyerap energi seluruhnya kemudian mampu mengubah seluruh energi yang diserap sepenuhnya menjadi kerja/ usaha nah, berdasar pernyataan tersebut maka muncul efisiensi mesin (atau nilai kinerja mesin) yang dinyatakan dengan koefisien \bf \eta yang dibaca “eta”pertanyaannya mengapa \bf{Q_1} dikurangi \bf{Q_2} ? Karena \bf{Q_1} adalah energi yang diserap mesin pada tandon (reservoir energi) bersuhu tinggi yang akan melepaskan kalor (energi) secara spontan kepada \bf{Q_2} (reservoir atau tandon energi bersuhu rendah) yang berfungsi menyerap energi tersebut.Sementara mesin pendingin berprinsip, menyerap energi panas dari dalam suatu ruang dan kemudian menyedot dan membuangnya ke lingkungan. Energi yang dibuang ke lingkungan itu suhunya lebih tinggi. Mengapa ? Karena untuk menyedot energi dari dalam ruang diperlukan pompa pengisap sebab energi dari benda bersuhu rendah tidak dapat mengalir secara spontan ! Sehingga energi dalam ruang dinyatakan sebagai\bf{Q_2} dan energi panas yang dibuang ke luar sistem menuju lingkungan dinyatakan sebagai \bf{Q_1}Bentuk persamaan efisiensi mesin pendingin (koefisien kinerja mesin pendingin dinyatakan dengan huruf cp atau kk) adalah :cp = kk = \frac{Q_2}{Q_1 - Q_2} karena \bf{Q_1} selalu lebih besar nilainya dari \bf{Q_2} maka hasil pembagian fungsi tersebut selalu lebih dari angka 1.

Kamis, 18 Maret 2010

HUKUM KEKEKALAN MOMENTUM

Pada pokok bahasan Momentum dan Impuls, kita telah berkenalan dengan konsep momentum serta pengaruh momentum benda pada peristiwa tumbukan. Pada kesempatan ini kita akan meninjau momentum benda ketika dua buah benda saling bertumbukan. Ingat ya, momentum merupakan hasil kali antara massa benda dengan kecepatan gerak benda tersebut. Jadi momentum suatu benda selalu dihubungkan dengan massa dan kecepatan benda. Kita tidak bisa meninjau momentum suatu benda hanya berdasarkan massa atau kecepatannya saja. Pahami baik-baik konsep ini ya….
Pernahkah anda menonton permainan biliard ? lebih baik lagi jika dirimu adalah pemain biliard tuh gambarnya di samping kiri… biasanya pada permainan billiard, kita berusaha untuk memasukan bola ke dalam lubang. Bola yang menjadi target biasanya diam. Jika anda perhatikan secara cermat, kecepatan bola biliard yang disodok menuju bola biliard target menjadi berkurang setelah kedua bola biliard bertumbukan. Sebaliknya, setelah bertumbukan, bola biliard yang pada mulanya diam menjadi bergerak. Berhubung massa bola biliard selalu tetap, maka yang mengalami perubahan adalah kecepatan. Karena bola billiard yang disodok mengalami pengurangan kecepatan setelah tumbukan, maka tentu saja momentumnya juga berkurang. Jika momentum bola billiard yang disodok berkurang, kemanakah momentumnya pergi ? bisa kita tebak, momentum yang hilang pada bola billiard yang disodok berpindah ke bola billiard target. Kok bisa ? ya iyalah bola billiard target kan pada mulanya diam, sehingga momentumnya pasti nol. Setelah bertumbukkan, bola billiard tersebut bergerak. Karena bergerak, maka tentu saja bola billiard target memiliki momentum. Jadi momentum bola billiard yang disodok tadi berpindah ke bola billiard target. Dengan demikian kita bisa mengatakan bahwa perubahan momentum pada kedua bola billiard setelah terjadi tumbukan disebabkan karena adanya “perpindahan momentum” dari satu bola billiard ke bola biliard lainnya.
Nah, sekarang pahami penjelasan gurumuda ini baik2 ya….. Pada saat sebelum tumbukan, bola billiard target diam sehingga momentumnya = 0, sedangkan bola billiard yang disodok bergerak dengan kecepatan tertentu; bola billiard yang disodok memiliki momentum. Setelah terjadi tumbukan, kecepatan bola billiard yang disodok berkurang; karenanya momentumnya juga berkurang. Sebaliknya, bola billiard target yang pada mulanya diam menjadi bergerak setelah terjadi tumbukan. Karena bergerak maka kita bisa mengatakan bahwa momentum bola billiard target “bertambah”. Dapatkah kita menyimpulkan bahwa jumlah momentum kedua bola billiard tersebut sebelum tumbukan = jumlah momentum kedua bola billiard setelah tumbukan ?
Jika bingung, dibaca perlahan-lahan sambil dipahami ya…. bagi yang belum pernah melihat atau bermain bola billiard, anda pasti kebingungan dengan penjelasan di atas. Oleh karena itu, segera beli dua buah kelereng pada warung atau toko terdekat…. dan lakukan percobaan berikut. Letakkan sebuah kelereng pada permukaan lantai yang datar. Setelah itu, tembakkan kelereng yang diam tersebut menggunakan kelereng lainnya dari jarak tertentu. Jika meleset, ulangi sampai kedua kelereng bertumbukan. Amati secara saksama kecepatan gerak kelereng tersebut. Setelah kedua kelereng bertumbukan, kelereng yang pada mulanya diam (tidak memiliki momentum) pasti bergerak (memiliki momentum). Sebaliknya, kelereng yang anda kutik tadi pasti kecepatannya berkurang setelah tumbukan (momentumnya berkurang). Dengan demikian kita bisa mengatakan bahwa momentum kelereng yang dikutik berkurang karena sebagian momentumnya berpindah ke kelereng target yang pada mulanya diam. Dapatkah kita menyimpulkan bahwa jumlah momentum kedua kelereng sebelum tumbukan = jumlah momentum kedua kelereng setelah tumbukan ?
Alangkah baiknya jika dirimu melakukan percobaan menumbukkan dua bola (mirip bola billiard) di atas permukaan meja getar. Syukur kalau di laboratorium sekolah-mu ada meja getar. Pada percobaan menumbukan dua bola di atas permukaan meja getar, kita mengitung kecepatan kedua bola sebelum dan setelah tumbukan. Massa bola tetap, sehingga yang diselidiki adalah kecepatannya. Frekuensi getaran meja = frekuensi listrik PLN (50 Hertz). Karena telah diketahui frekuensi getaran meja, maka kita bisa menentukan periode getaran meja. Nah, waktunya sudah diketahui, sekarang tugas kita adalah mengukur panjang jejak bola ketika bergerak di atas meja getar. Karena meja bergetar setiap 0,02 detik (1/50), maka ketika bergerak di atas meja, bola pasti meninggalkan jejak di atas meja yang sudah kita lapisi dengan kertas karbon. Jarak antara satu jejak dengan jejak yang lain; yang ditinggalkan bola setiap 0,02 detik kita ukur. Setelah memperoleh data jarak tempuh bola, selanjutnya kita bisa menghitung kecepatan gerak kedua bola tersebut, baik sebelum tumbukan maupun setelah tumbukan. selanjutnya kita hitung momentum kedua bola sebelum tumbukan (p = mv) dan momentum kedua bola setelah tumbukan (p’ = mv’). Jika percobaan dilakukan dengan baik dan benar, maka kesimpulan yang kita peroleh adalah total momentum dua benda sebelum tumbukan = total momentum kedua benda tersebut setelah tumbukan.
Jika di laboratorium sekolah anda tidak ada meja getar, coba pahami ilustrasi bola biliard atau kelereng di atas secara saksama. Jika sudah paham, anda pasti setuju kalau gurumuda mengatakan bahwa jumlah momentum kedua benda sebelum tumbukan = jumlah momentum kedua benda setelah tumbukan. Pada ilustrasi di atas, sebelum tumbukan salah satu benda diam. Pada dasarnya sama saja bila dua benda sama-sama bergerak sebelum tumbukan. Kecepatan gerak kedua benda tersebut pasti berubah setelah tumbukan, sehingga momentum masing-masing benda juga mengalami perubahan. Kecuali jika massa dan kecepatan dua benda sama sebelum kedua benda tersebut saling bertumbukan. Biasanya total momentum kedua benda sebelum tumbukan = total momentum kedua benda setelah terjadi tumbukan.
Penjelasan panjang lebar dan bertele-tele di atas hanya mau mengantar dirimu untuk memahami inti pokok bahasan ini, yakni Hukum Kekekalan Momentum. Tidak peduli berapapun massa dan kecepatan benda yang saling bertumbukan, ternyata momentum total sebelum tumbukan = momentum total setelah tumbukan. Hal ini berlaku apabila tidak ada gaya luar alias gaya eksternal total yang bekerja pada benda yang bertumbukan. Jadi analisis kita hanya terbatas pada dua benda yang bertumbukan, tanpa ada pengaruh dari gaya luar. Sekarang perhatikan gambar di bawah ini.
Jika dua benda yang bertumbukan diilustrasikan dengan gambar di atas, maka secara matematis, hukum kekekalan momentum dinyatakan dengan persamaan :
Keterangan :
m1 = massa benda 1, m2 = massa benda 2, v1 = kecepatan benda 1 sebelum tumbukan, v2 = kecepatan benda 2 sebelum tumbukan, v’1 = kecepatan benda 1 setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan
Jika dinyatakan dalam momentum, maka :
m1v1 = momentum benda 1 sebelum tumbukan, m2v2 = momentum benda 2 sebelum tumbukan, m1v‘1 = momentum benda 1 setelah tumbukan, m2v‘2 = momentum benda 2 setelah tumbukan
Perlu anda ketahui bahwa Hukum Kekekalan Momentum ditemukan melalui percobaan pada pertengahan abad ke-17, sebelum eyang Newton merumuskan hukumnya tentang gerak (mengenai Hukum II Newton versi momentum telah saya jelaskan pada pokok bahasan Momentum, Tumbukan dan Impuls). Walaupun demikian, kita dapat menurunkan persamaan Hukum Kekekalan Momentum dari persamaan hukum II Newton. Yang kita tinjau ini khusus untuk kasus tumbukan satu dimensi, seperti yang dilustrasikan pada gambar di atas.
Kita tulis kembali persamaan hukum II Newton :
Ketika bola 1 dan bola 2 bertumbukan, bola 1 memberikan gaya pada bola 2 sebesar F21, di mana arah gaya tersebut ke kanan (perhatikan gambar di bawah)
Momentum bola 2 dinyatakan dengan persamaan :
Berdasarkan Hukum III Newton (Hukum aksi-reaksi), bola 2 memberikan gaya reaksi pada bola 1, di mana besar F12 = – F21. (Ingat ya, besar gaya reaksi = gaya aksi. Tanda negatif menunjukan bahwa arah gaya reaksi berlawanan dengan arah gaya aksi)
Momentum bola 1 dinyatakan dengan persamaan :
Ini adalah persamaan Hukum Kekekalan Momentum. Hukum Kekekalan Momentum berlaku jika gaya total pada benda-benda yang bertumbukan = 0. Pada penjelasan di atas, gaya total pada dua benda yang bertumbukan adalah F12 + (-F21) = 0. Jika nilai gaya total dimasukan dalam persamaan momentum :
Hal ini menunjukkan bahwa apabila gaya total pada sistem = 0, maka momentum total tidak berubah. Yang dimaksudkan dengan sistem adalah benda-benda yang bertumbukan. Apabila pada sistem tersebut bekerja gaya luar (gaya-gaya yang diberikan oleh benda di luar sistem), sehingga gaya total tidak sama dengan nol, maka hukum kekekalan momentum tidak berlaku.
Dengan demikian, kita dapat menyimpulkan bahwa :
Jika tidak ada gaya luar yang bekerja pada benda-benda yang bertumbukan, maka jumlah momentum benda-benda
sebelum tumbukan sama dengan jumlah momentum benda-benda setelah tumbukan.
Ini adalah pernyataan hukum kekekalan momentum

TUMBUKAN

JENIS-JENIS TUMBUKAN
Perlu anda ketahui bahwa biasanya dua benda yang bertumbukan bergerak mendekat satu dengan yang lain dan setelah bertumbukan keduanya bergerak saling menjauhi. Ketika benda bergerak, maka tentu saja benda memiliki kecepatan. Karena benda tersebut mempunyai kecepatan (dan massa), maka benda itu pasti memiliki momentum (p = mv) dan juga Energi Kinetik (EK = ½ mv2).
Nah, pada kesempatan ini kita akan mempelajari jenis-jenis tumbukan antara dua benda dan mencoba melihat hubungannya dengan Kekekalan Momentum dan Kekekalan Energi Kinetik. Napa yang ditinjau kekekalan momentum dan kekekalan energi kinetik-nya ? bukannya Cuma momentum dan energi kinetik ? yupz… maksudnya begini, ketika benda bergerak saling mendekati sebelum tumbukan, kedua benda itu memiliki Momentum dan Energi Kinetik. Yang menjadi persoalan, bagaimana dengan Momentum dan Energi Kinetik kedua benda tersebut setelah bertumbukan ? apakah momentum dan energi kinetik kedua benda ketika sebelum tumbukan = momentum dan energi kinetik benda setelah tumbukan ? agar dirimu semakin memahaminya, mari kita bahas jenis-jenis tumbukan satu persatu dan meninjau kekekalan momentum dan kekekalan energi kinetik pada kedua benda yang bertumbukan.
Secara umum terdapat beberapa jenis tumbukan, antara lain Tumbukan lenting sempurna, Tumbukan lenting sebagian dan Tumbukan tidak lenting sama sekali.
TUMBUKAN LENTING SEMPURNA
Tumbukan lenting sempurna tu maksudnya bagaimanakah ? Dua benda dikatakan melakukan Tumbukan lenting sempurna jika Momentum dan Energi Kinetik kedua benda sebelum tumbukan = momentum dan energi kinetik setelah tumbukan. Dengan kata lain, pada tumbukan lenting sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik.
Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik berlaku pada peristiwa tumbukan lenting sempurna karena total massa dan kecepatan kedua benda sama, baik sebelum maupun setelah tumbukan. Hukum Kekekalan Energi Kinetik berlaku pada Tumbukan lenting sempurna karena selama tumbukan tidak ada energi yang hilang. Untuk memahami konsep ini, coba jawab pertanyaan gurumuda berikut ini. Ketika dua bola billiard atau dua kelereng bertumbukan, apakah anda mendengar bunyi yang diakibatkan oleh tumbukan itu ? atau ketika mobil atau sepeda motor bertabrakan, apakah ada bunyi yang dihasilkan ? pasti ada bunyi dan juga panas yang muncul akibat benturan antara dua benda. Bunyi dan panas ini termasuk energi. Jadi ketika dua benda bertumbukan dan menghasilkan bunyi dan panas, maka ada energi yang hilang selama proses tumbukan tersebut. Sebagian Energi Kinetik berubah menjadi energi panas dan energi bunyi. Dengan kata lain, total energi kinetik sebelum tumbukan tidak sama dengan total energi kinetik setelah tumbukan.
Nah, benda-benda yang mengalami Tumbukan Lenting Sempurna tidak menghasilkan bunyi, panas atau bentuk energi lain ketika terjadi tumbukan. Tidak ada Energi Kinetik yang hilang selama proses tumbukan. Dengan demikian, kita bisa mengatakan bahwa pada peritiwa Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Energi Kinetik.
Apakah tumbukan lenting sempurna dapat kita temui dalam kehidupan sehari-hari ? Tidak…. Tumbukan lenting sempurna merupakan sesuatu yang sulit kita temukan dalam kehidupan sehari-hari. Paling tidak ada ada sedikit energi panas dan bunyi yang dihasilkan ketika terjadi tumbukan. Salah satu contoh tumbukan yang mendekati lenting sempurna adalah tumbukan antara dua bola elastis, seperti bola billiard. Untuk kasus tumbukan bola billiard, memang energi kinetik tidak kekal tapi energi total selalu kekal. Lalu apa contoh Tumbukan lenting sempurna ? contoh jenis tumbukan ini tidak bisa kita lihat dengan mata telanjang karena terjadi pada tingkat atom, yakni tumbukan antara atom-atom dan molekul-molekul. Istirahat dulu ah…
Sekarang mari kita tinjau persamaan Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik pada perisitiwa Tumbukan Lenting Sempurna. Untuk memudahkan pemahaman dirimu, perhatikan gambar di bawah.
Dua benda, benda 1 dan benda 2 bergerak saling mendekat. Benda 1 bergerak dengan kecepatan v1 dan benda 2 bergerak dengan kecepatan v2. Kedua benda itu bertumbukan dan terpantul dalam arah yang berlawanan. Perhatikan bahwa kecepatan merupakan besaran vektor sehingga dipengaruhi juga oleh arah. Sesuai dengan kesepakatan, arah ke kanan bertanda positif dan arah ke kiri bertanda negatif. Karena memiliki massa dan kecepatan, maka kedua benda memiliki momentum (p = mv) dan energi kinetik (EK = ½ mv2). Total Momentum dan Energi Kinetik kedua benda sama, baik sebelum tumbukan maupun setelah tumbukan.
Secara matematis, Hukum Kekekalan Momentum dirumuskan sebagai berikut :
Keterangan :
m1 = massa benda 1, m2 = massa benda 2
v1 = kecepatan benda sebelum tumbukan dan v2 = kecepatan benda 2 Sebelum tumbukan
v’1 = kecepatan benda Setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan
Jika dinyatakan dalam momentum,
m1v1 = momentum benda 1 sebelum tumbukan, m1v’1 = momentum benda 1 setelah tumbukan
m2v2 = momentum benda 2 sebelum tumbukan, m2v’2 = momentum benda 2 setelah tumbukan
Pada Tumbukan Lenting Sempurna berlaku juga Hukum Kekekalan Energi Kinetik. Secara matematis dirumuskan sebagai berikut :
Kita telah menurunkan 2 persamaan untuk Tumbukan Lenting Sempurna, yakni persamaan Hukum Kekekalan Momentum dan Persamaan Hukum Kekekalan Energi Kinetik. Ada suatu hal yang menarik, bahwa apabila hanya diketahui massa dan kecepatan awal, maka kecepatan setelah tumbukan bisa kita tentukan menggunakan suatu persamaan lain. Persamaan ini diturunkan dari dua persamaan di atas. Persamaan apakah itu ? nah, mari kita turunkan persamaan tersebut… dipahami perlahan-lahan ya
Sekarang kita tulis kembali persamaan Hukum Kekekalan Momentum :
Kita tulis kembali persamaan Hukum Kekekalan Energi Kinetik :
Kita tulis kembali persamaan ini menjadi :
Ini merupakan salah satu persamaan penting dalam Tumbukan Lenting sempurna, selain persamaan Kekekalan Momentum dan persamaan Kekekalan Energi Kinetik. Persamaan 3 menyatakan bahwa pada Tumbukan Lenting Sempurna, laju kedua benda sebelum dan setelah tumbukan sama besar tetapi berlawanan arah, berapapun massa benda tersebut.
Koofisien elastisitas Tumbukan Lenting Sempurna
Wah, istilah baru lagi ne… apaan sie koofisien elastisitas ? sebelum gurumuda menjelaskan apa itu koofisien elastisitas, mari kita obok2 lagi rumus fisika. Kali ini giliran persamaan 3…
Kita tulis lagi persamaan 3 :
Perbandingan negatif antara selisih kecepatan benda setelah tumbukan dengan selisih kecepatan benda sebelum tumbukan disebut sebagai koofisien elatisitas alias faktor kepegasan (dalam buku Karangan Bapak Marthen Kanginan disebut koofisien restitusi). Untuk Tumbukan Lenting Sempurna, besar koofisien elastisitas = 1. ini menunjukkan bahwa total kecepatan benda setelah tumbukan = total kecepatan benda sebelum tumbukan. Lambang koofisien elastisitas adalah e. Secara umum, nilai koofisien elastisitas dinyatakan dengan persamaan :
e = koofisien elastisitas = koofisien restitusi, faktor kepegasan, angka kekenyalan, faktor keelastisitasan
TUMBUKAN LENTING SEBAGIAN
Pada pembahasan sebelumnya, kita telah belajar bahwa pada Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekakalan Energi Kinetik. Nah, bagaimana dengan tumbukan lenting sebagian ?
Pada tumbukan lenting sebagian, Hukum Kekekalan Energi Kinetik tidak berlaku karena ada perubahan energi kinetik terjadi ketika pada saat tumbukan. Perubahan energi kinetik bisa berarti terjadi pengurangan Energi Kinetik atau penambahan energi kinetik. Pengurangan energi kinetik terjadi ketika sebagian energi kinetik awal diubah menjadi energi lain, seperti energi panas, energi bunyi dan energi potensial. Hal ini yang membuat total energi kinetik akhir lebih kecil dari total energi kinetik awal. Kebanyakan tumbukan yang kita temui dalam kehidupan sehari-hari termasuk dalam jenis ini, di mana total energi kinetik akhir lebih kecil dari total energi kinetik awal. Tumbukan antara kelereng, tabrakan antara dua kendaraan, bola yang dipantulkan ke lantai dan lenting ke udara, dll.
Sebaliknya, energi kinetik akhir total juga bisa bertambah setelah terjadi tumbukan. Hal ini terjadi ketika energi potensial (misalnya energi kimia atau nuklir) dilepaskan. Contoh untuk kasus ini adalah peristiwa ledakan.
Suatu tumbukan lenting sebagian biasanya memiliki koofisien elastisitas (e) berkisar antara 0 sampai 1. Secara matematis dapat ditulis sebagai berikut :
Bagaimana dengan Hukum Kekekalan Momentum ? Hukum Kekekalan Momentum tetap berlaku pada peristiwa tumbukan lenting sebagian, dengan anggapan bahwa tidak ada gaya luar yang bekerja pada benda-benda yang bertumbukan.
TUMBUKAN TIDAK LENTING SAMA SEKALI
Bagaimana dengan tumbukan tidak lenting sama sekali ? suatu tumbukan dikatakan Tumbukan Tidak Lenting sama sekali apabila dua benda yang bertumbukan bersatu alias saling menempel setelah tumbukan. Salah satu contoh populer dari tumbukan tidak lenting sama sekali adalah pendulum balistik. Pendulum balistik merupakan sebuah alat yang sering digunakan untuk mengukur laju proyektil, seperti peluru. Sebuah balok besar yang terbuat dari kayu atau bahan lainnya digantung seperti pendulum. Setelah itu, sebutir peluru ditembakkan pada balok tersebut dan biasanya peluru tertanam dalam balok. Sebagai akibat dari tumbukan tersebut, peluru dan balok bersama-sama terayun ke atas sampai ketinggian tertentu (ketinggian maksimum). Lihat gambar di bawah…
Apakah pada Tumbukan Tidak Lenting Sama sekali berlaku hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik ?
Perhatikan gambar di atas. Hukum kekekalan momentum hanya berlaku pada waktu yang sangat singkat ketika peluru dan balok bertumbukan, karena pada saat itu belum ada gaya luar yang bekerja. Secara matematis dirumuskan sebagai berikut :
m1v1 + m2v2 = m1v’1 + m2v’2
m1v1 + m2(0) = (m1 + m2) v’
m1v1 = (m1 + m2) v’—- persamaan 1
Apakah setelah balok mulai bergerak masih berlaku hukum Kekekalan Momentum ? Tidak…. Mengapa tidak ? ketika balok (dan peluru yang tertanam di dalamnya) mulai bergerak, akan ada gaya luar yang bekerja pada balok dan peluru, yakni gaya gravitasi. Gaya gravitasi cenderung menarik balok kembali ke posisi setimbang. Karena ada gaya luar total yang bekerja, maka hukum Kekekalan Momentum tidak berlaku setelah balok bergerak.
Lalu bagaimana kita menganalisis gerakan balok dan peluru setelah tumbukan ?
Nah, masih ingatkah dirimu pada Hukum Kekekalan Energi Mekanik ? kita dapat menganalisis gerakan balok dan peluru setelah tumbukan menggunakan hukum Kekekalan Energi Mekanik. Ketika balok mulai bergerak setelah tumbukan, sedikit demi sedikit energi kinetik berubah menjadi energi potensial gravitasi. Ketika balok dan peluru mencapai ketinggian maksimum (h), seluruh Energi Kinetik berubah menjadi Energi Potensial gravitasi. Dengan kata lain, pada ketinggian maksimum (h), Energi Potensial gravitasi bernilai maksimum, sedangkan EK = 0.
Kita turunkan persamaannya ya
Catatan :
Ketika balok dan peluru tepat mulai bergerak dengan kecepatan v’, h1 = 0. Pada saat balok dan peluru berada pada ketinggian maksimum, h2 = h dan v2 = 0.
Persamaan Hukum Kekekalan Energi Mekanik untuk kasus tumbukan tidak lenting sama sekali.
EM1 = EM2
EP1 + EK1 = EP2 + EK2
0 + EK1 = EP2 + 0
½ (m1 + m2)v’2 = (m1 + m2) g h — persamaan 2

SEMUA TENTANG TORSI (MOMEN GAYA)

Hubungan antara Gaya, Lengan Gaya (Lengan Torsi) dan Percepatan Sudut
Untuk memahami persoalan ini, pahami ilustrasi berikut ini. Kita tinjau sebuah benda yang berotasi. Misalnya pintu rumah. Btw, ketika kita membuka dan menutup pintu, pintu juga melakukan gerak rotasi. Engsel yang menghubungkan pintu dengan tembok berperan sebagai sumbu rotasi.
Ini gambar pintu (dilihat dari atas). Misalnya kita mendorong pintu dengan gaya yang sama (F12). Mula-mula kita mendorong pintu dengan gaya F1 yang berjarak r1 dari sumbu rotasi. Setelah itu kita mendorong pintu dengan gaya F2 yang berjarak r2 dari sumbu rotasi. Walaupun besar dan arah Gaya F1 = F2, Gaya F2 akan membuat pintu berputar lebih cepat dibandingkan dengan Gaya F1. Dengan kata lain, gaya F2 menghasilkan percepatan sudut yang lebih besar dibandingkan dengan gaya F1. Masa sich ? serius… dirimu bisa membuktikan dengan mendorong pintu di rumah. = F
Jadi dalam gerak rotasi, percepatan sudut tidak hanya bergantung pada Gaya saja, tetapi bergantung juga pada jarak tegak lurus antara sumbu rotasi dengan garis kerja gaya. Jarak tegak lurus dari sumbu rotasi ke garis kerja gaya, dinamakan lengan gaya alias lengan torsi. Pada contoh di atas, Lengan gaya untuk F1 adalah r1, sedangkan lengan gaya untuk F2 adalah r2.
Catatan :
Mengenai lengan gaya, selengkapnya dipelajari pada penjelasan di bawah. Untuk ilustrasi di atas, lengan gaya = r, karena garis kerja gaya (arah gaya) tegak lurus sumbu rotasi.
Kita bisa menyimpulkan bahwa percepatan sudut yang dialami benda yang berotasi berbanding lurus dengan hasil kali Gaya dengan lengan gaya. Hasil kali antara gaya dan lengan gaya ini dikenal dengan julukan Torsi alias momen gaya. Jadi percepatan sudut benda sebanding alias berbanding lurus dengan torsi. Semakin besar torsi, semakin besar percepatan sudut. Semakin kecil torsi, semakin kecil percepatan sudut (percepatan sudut =perubahan kecepatan sudut)
Secara matematis, hubungan antara Torsi dengan percepatan sudut dinyatakan sebagai berikut :
Hubungan antara Arah Gaya dengan Lengan Gaya
Pada penjelasan di atas, arah gaya F1 dan F2 tegak lurus pintu. Kali ini kita mencoba melihat beberapa kondisi yang berbeda. Perhatikan gambar di bawah.
Gambar pintu (dilihat dari atas). Pada gambar a, garis kerja gaya tegak lurus terhadap r (garis kerja gaya membentuk sudut 90o). Pada gambar b, garis kerja gaya membentuk sudut teta terhadap r. Pada Gambar c, garis kerja gaya berhimpit dengan r (garis kerja gaya menembus sumbu rotasi). Walaupun besar gaya sama, tapi karena arah gaya berbeda, maka besar lengan gaya juga berbeda. Lengan gaya l1 lebih besar dari lengan gaya l2. Sedangkan lengan gaya l3 = 0 karena garis kerja gaya F3 berhimpit dengan sumbu rotasi.
Untuk menentukan lengan gaya, kita bisa menggambarkan garis dari sumbu rotasi menuju garis kerja gaya, di mana garis dari sumbu rotasi harus tegak lurus alias membentuk sudut siku-siku dengan garis kerja gaya.
Persamaan Lengan Gaya
Untuk membantu menurunkan persamaan lengan gaya, gurumuda menggunakan bantuan gambar
Amati gambar di atas. Garis kerja gaya membentuk sudut teta terhadap r.
Apabila garis kerja gaya tegak lurus r (gambar a), maka besar lengan gaya adalah :
Apabila garis kerja gaya berhimpit dengan r (gambar c), maka besar lengan gaya adalah :
BESAR TORSI
Torsi adalah hasil kali antara gaya dan lengan gaya. Secara matematis, torsi dirumuskan sebagai berikut :
Jika arah gaya tegak lurus r, maka sudut yang dibentuk adalah 90o. Dengan demikian, besar Torsi untuk kasus ini adalah :
Jika arah gaya berhimpit dengan r, maka sudut yang dibentuk adalah 0o. Dengan demikian, besar Torsi untuk kasus ini adalah :
Para fisikawan sering menggunakan istilah torsi sedangkan para insnyur sering menggunakan istilah Momen Gaya.
Satuan Sistem Internasional untuk Torsi adalah Newton meter. Satuan Torsi tetap Newton meter, bukan joule, karena torsi bukan energi.
ARAH TORSI
Torsi merupakan besaran vector, sehingga selain mempunyai besar, torsi juga mempunyai arah. Apabila arah rotasi berlawanan dengan putaran jarum jam, maka Torsi bernilai positif. Sebaliknya, apabila arah rotasi searah dengan putaran jarum jam, maka arah torsi bernilai negative. Untuk menentukan arah torsi, kita menggunakan kaidah alias aturan tangan kanan. Untuk mempermudah pemahamanmu, perhatikan gambar di bawah.
Pintu didorong ke depan
Catatan :
Arah gaya F pada gambar di bawah tidak tegak lurus ke atas alias tidak menuju ke langit. Arah gaya menembus pintu. Jadi pintunya dilihat dari atas. Bayangkanlah dirimu mendorong pintu ke depan, di mana arah doronganmu tegak lurus pintu itu.
Gambar pintu (dilihat dari atas). Misalnya kita mendorong pintu dengan gaya F, di mana arah gaya tegak lurus r. Bagaimana-kah arah Torsi untuk kasus ini ? gampang… Gunakan aturan tangan kanan. Rentangkan jari tangan kanan dan usahakan supaya posisi keempat jari tangan kanan sejajar dengan arah gaya F. setelah itu, putar keempat jari tangan kanan menuju sumbu rotasi (ke kiri). Arah yang ditunjukkan oleh Ibu Jari adalah arah Torsi. Untuk contoh di atas, putaran keempat jari tangan kanan berlawanan dengan putaran jarum jam. Arah torsi tegak lurus ke atas (menuju langit)
Pintu didorong ke belakang
Catatan :
Arah gaya F pada gambar di bawah tidak tegak lurus ke bawah alias tidak menuju ke tanah. Arah gaya menembus pintu. Bayangkanlah dirimu mendorong pintu dari depan, di mana arah doronganmu tegak lurus pintu itu.
Gunakan aturan tangan kanan lagi untuk menentukan arah torsi. Rentangkan jari tangan kanan dan usahakan supaya posisi keempat jari tangan kanan sejajar dengan arah gaya F. setelah itu, putar keempat jari tangan kanan menuju sumbu rotasi. Arah yang ditunjukkan oleh Ibu Jari adalah arah Torsi. Untuk kasus ini, putaran keempat jari tangan kanan searah dengan putaran jarum jam. Arah torsi tegak lurus ke bawah (menuju ke dalam tanah). Arah Torsi bernilai negative karena putaran searah dengan arah putaran jarum jam.
Contoh Soal 1 :
Seorang kakek mendorong pintu, di mana arah dorongan tegak lurus pintu (lihat gambar di bawah). Tentukan Torsi yang dikerjakan sang kakek terhadap pintu…
Panduan Jawaban :
Guampang sekali….
Untuk contoh di atas, lengan gaya (l) = jarak gaya dari sumbu rotasi (r), karena garis kerja gaya tegak lurus pintu.
Arah torsi ?
Perhatikan arah rotasi alias arah putaran pintu pada gambar di atas. Arah torsi tegak lurus ke langit… mudahnya seperti ini. Putar keempat jari tangan kananmu searah dengan arah rotasi. Arah yang ditunjukkan oleh ibu jari adalah arah torsi. Arah rotasi berlawanan dengan jarum jam, sehingga torsi bernilai positif.
Level 1 selesai… next mision
Contoh Soal 2 :
Seorang bayi yang sangat superaktif sedang merangkak di dekat pintu, lalu mendorong tepio terhadap pintu, tentukan torsi yang dikerjakan bayi (amati gambar di bawah). pintu dengan gaya sebesar 2 N. Jika lebar pintu 1 meter dan arah dorongan si bayi yang nakal itu membentuk sudut 60
Panduan Jawaban :
Soal gini ma guampang
Sekarang kita hitung Torsi yang dikerjakan si bayi yang supernakal tadi :
Ya, kecil sekali…
Arah torsi kemana-kah ?
Perhatikan arah rotasi alias arah putaran pintu pada gambar di atas. Arah rotasi berlawanan dengan jarum jam, sehingga torsi bernilai postif. Arah torsi tegak lurus ke langit… mudahnya seperti ini. Putar keempat jari tangan kananmu searah dengan arah rotasi. Arah yang ditunjukkan oleh ibu jari adalah arah torsi.
NB :
Seandainya si bayi memberikan gaya dorong yang arahnya tegak lurus pintu, berapa Torsi-nya ? yang ini hitung sendiri ya…..
Level 2 selesai… next mision
Contoh Soal 3 :
Seorang tukang memasang sebuah mur menggunakan sebuah kunci, seperti tampak pada gambar. Jika besar gaya yang diberikan 40 N dan garis kerja gaya membentuk sudut 45o terhadap r, tentukan besar lengan gaya dan torsi yang dikerjakan pada mur tersebut (r = 0,2 meter)
Panduan Jawaban :
Terlebih dahulu kita hitung lengan gaya alias lengan torsi :
Wah, lengan gaya Cuma 0,14 meter.
Sekarang kita hitung besar Torsi :
Arah torsi bagaimana-kah ?
Perhatikan gambar di atas. Arah rotasi searah dengan putaran jarum jam (kunci di tekan ke bawah). Dengan demikian, arah torsi menuju ke dalam (arah gerakan mur ke dalam). Untuk kasus ini, sepertinya om tukang memasang mur. Untuk memudahkan pemahamanmu, gunakan aturan tangan kanan. Posisikan tangan kananmu hingga sejajar dengan kunci (ujung jari tanganmu berada di tepi kunci/sekitar F) . Setelah itu, putar keempat jari tanganmu menuju sumbu rotasi (diputar ke bawah/searah putaran jarum jam). Nah, arah ibu jari menunjukan arah torsi.